Renaud L. A 5-y follow-up of the radiation exposure to in-room personnel during cardiac catheterization. Health Phys. 1992;62:10-5.

This study documents the radiation doses received by all in-room personnel of three cardiac catheterization laboratories where more than 15,000 cardiac procedures have been performed over a 5-y period. It is shown that all in-room personnel was exposed to a body dose equivalent well below any regulatory limits. However, some workers may have exceeded the occupational 150 mSv y-1 recommended limit for the lens of the eye. The physicians-in-training and the staff physicians are the two groups more likely to reach this limit. It is also demonstrated that a low correlation exists between the annual number of procedures and the annual head dose equivalent of a physician, but more variation is likely to originate from his/her working attitude and techniques. The mean dose equivalent at the collar level of the physicians is estimated to be 0.04 +/- 0.02 mSv per procedure.

Rehani MM, et al. ICRP Publication 117. Radiological Protection In Fluoroscopically Guided Procedures Performed Outside The Imaging Department. Ann ICRP. 2010 Dec;40(6):1-102.

A brief account of the health effects of ionising radiation and protection principles is presented in Section 2. Section 3 deals with general aspects of the protection of workers and patients that are common to all, whereas specific aspects are covered in Section 4 for vascular surgery, urology, orthopaedic surgery, obstetrics and gynaecology, gastroenterology and hepatobiliary system, and anaesthetics and pain management.

Renaud L. A 5-y follow-up of the radiation exposure to in-room personnel during cardiac catheterization. Health Phys. 1992;62:10-5.

This study documents the radiation doses received by all in-room personnel of three cardiac catheterization laboratories where more than 15,000 cardiac procedures have been performed over a 5-y period. It is shown that all in-room personnel was exposed to a body dose equivalent well below any regulatory limits. However, some workers may have exceeded the occupational 150 mSv y-1 recommended limit for the lens of the eye. The physicians-in-training and the staff physicians are the two groups more likely to reach this limit. It is also demonstrated that a low correlation exists between the annual number of procedures and the annual head dose equivalent of a physician, but more variation is likely to originate from his/her working attitude and techniques. The mean dose equivalent at the collar level of the physicians is estimated to be 0.04 +/- 0.02 mSv per procedure.

Rehani MM, et al. ICRP Publication 117. Radiological Protection In Fluoroscopically Guided Procedures Performed Outside The Imaging Department. Ann ICRP. 2010 Dec;40(6):1-102.

A brief account of the health effects of ionising radiation and protection principles is presented in Section 2. Section 3 deals with general aspects of the protection of workers and patients that are common to all, whereas specific aspects are covered in Section 4 for vascular surgery, urology, orthopaedic surgery, obstetrics and gynaecology, gastroenterology and hepatobiliary system, and anaesthetics and pain management.

Weisz W, Metzger DC, Caputo RP, et al. Safety And Feasibility Of Robotic Percutaneous Coronary Intervention: PRECISE (Percutaenous Robotically-Enhanced Coronary Intervention) Study. J Am Coll Cardiol. 2013 Apr 16:61(15):1596-1600.

The aim of this study was to evaluate the safety as well as the clinical and technical effectiveness of robotic-assisted percutaneous coronary intervention. A total of 164 patients were enrolled at 9 sites. Percutaneous coronary intervention was completed successfully without conversion to manual operation, and device technical success was achieved in 162 of 164 patients (98.8%). There were no device-related complications. Clinical procedural success was achieved in 160 of 164 patients (97.6%), whereas 4 (2.4%) had periprocedural non–Q-wave myocardial infarctions. No deaths, strokes, Q-wave myocardial infarctions, or revascularization occurred in the 30 days after the procedures. Radiation exposure for the primary operator was 95.2% lower than the levels found at the traditional table position.

Walters D, Omran J, Patel M, et al. Robotic-Assisted Percutaneous Coronary Intervention: Concept, Data, and Clinical Application. Interv Cardiol Clin. 2019 Apr;8(2):149-159.

The occupational hazards for interventional cardiologists include the risk of cataracts, malignancy, and orthopedic injury. Robotic technology is now available with the introduction of platforms for performing percutaneous coronary and peripheral interventions. The original remote navigation system has evolved into the current CorPath robotic system, now approved for robotic-assisted cardiovascular interventions. The system removes the operator from the tableside and has been validated for safety, feasibility, and efficacy in coronary and peripheral vascular disease.

Vañó E, Miller DL, Dauer L. Implications In Medical Imaging Of The New ICRP Thresholds For Tissue Reactions. Ann ICRP. 2015 Jun;44(1 Suppl): 118-128.

More research is needed to understand the biological effects of cumulative incident air kerma and the instantaneous air kerma rates currently used in medical imaging. The new thresholds, and the need for specific occupational dosimetry related to lens doses, should be considered in radiation protection programmes, and should be included in the education and training of professionals involved in fluoroscopy guided procedures and computed tomography.

Valuckiene Z, et al. Ionizing Radiation Exposure In Interventional Cardiology: Current Radiation Protection Practice Of Invasive Cardiology Operators In Lithuania. J Radiol Prot. 2016 Sep;36(3):695-708.

Our purpose was to assess the utilization and effectiveness of radiation protection and optimization techniques among interventional cardiologists in Lithuania. Thirty one (68.9%) out of 45 Lithuanian interventional cardiologists participated in the survey. Protective aprons were universally used, but not the thyroid collars; 35.5% (n  =  11) operators use protective eyewear and 12.9% (n  =  4) wear radio-protective caps; 83.9% (n  =  26) use overhanging shields, 58.1% (n  =  18)—portable barriers; 12.9% (n  =  4)—abdominal patient’s shielding; 35.5% (n  =  11) work at a high table position; 87.1% (n  =  27) keep an image intensifier/receiver close to the patient; 58.1% (n  =  18) reduce the fluoroscopy FR; 6.5% (n  =  2) reduce the fluoro image detail resolution; 83.9% (n  =  26) use a ‘store fluoro’ option; 41.9% (N  =  13) reduce magnification for catheter transit; 51.6% (n  =  16) limit image magnification; and 35.5% (n  =  11) use image collimation. Median effective patient doses were significantly lower with x-ray optimization techniques in both diagnostic and therapeutic interventions.

Stewart FA, Akleyev AV, Hauer-Jensen M, et al. ICRP PUBLICATION 118: ICRP Statement on Tissue Reactions and Early and Late Effects of Radiation in Normal Tissues and Organs — Threshold Doses for Tissue Reactions in a Radiation Protection Context. Ann ICRP. 2012 Feb;41(1-2):1–322.

This report provides a review of early and late effects in normal tissue and organs with respect to radiation protection. The organ systems comprise the haematopoietic, immune, reproductive, circulatory, respiratory, musculoskeletal, endocrine, and nervous systems; the digestive and urinary tracts; the skin;and the eye.

Stangenberg L, Shuja F, van der Bom IMJ, et al. Modern Fixed Imaging Systems Reduce Radiation Exposure To Patients And Providers. Vasc Endovasc Surg. 2018 Jan;52(1):52-58.

The present study explores another approach to reduce radiation exposure. Advanced imaging technology, which includes both hardware and software modifications aimed at noise reduction, can reduce the patient entrance dose and subsequently scatter radiation without compromising image quality.11 In this study, we evaluate 1 such technology (Philips ClarityIQ; Philips Healthcare, Best, the Netherlands) before and after an upgrade of the fixed cardiovascular imaging system at our institution and compared its effect on radiation exposure during EVAR or superficial femoral artery (SFA) interventions for patients and providers.